10. Основания и фундаменты
10.1. Основные положения
10.1.1. Проектирование основания и фундаментов под резервуар должно выполняться специализированной проектной организацией с учетом положений ГОСТ Р 52910-2008, СНиП 2.02.01-83*, СНиП 2.02.03-85; СНиП 2.02.04-88; СНиП II-7-87 и дополнительных требований настоящего Стандарта.
10.1.2. Материалы инженерно-геологических и гидрологических изысканий площадки строительства должны содержать следующие сведения о грунтах и грунтовых водах:
— литологические колонки под пятно резервуара, количество, глубина и расположение которых должны обеспечить построение достоверных разрезов вдоль контурной окружности основания и по ее диаметрам;
— физико-механические характеристики грунтов, представленных в литологических колонках (удельный вес γ, угол внутреннего трения φ, сцепление С, модуль деформации Е, коэффициент пористости ε);
— расчетный уровень грунтовых вод с прогнозом гидрологического режима на ближайшие 20 лет для резервуаров объемом до 10000 м3 и на 50 лет для резервуаров объемом более 10000 м3.
Кроме того, если сжимаемая толща представлена слабыми грунтами (модуль деформации менее 10 МПа), то для каждой грунтовой разности должны быть приведены значения коэффициента фильтрации.
Для величин физико-механических характеристик грунтов должны приводиться однозначные расчетные значения.
При проектировании фундаментов резервуаров в сложных инженерно-геологических условиях инженерные изыскания должны выполняться специализированными организациями и содержать данные для выбора типа оснований и фундаментов с учетом возможного изменения (в процессе строительства и эксплуатации) инженерно-геологических и гидрологических условий площадки строительства.
10.1.3. Расчет основания по деформациям предусматривает определение расчетных значений величин, характеризующих абсолютные и относительные перемещения фундаментных конструкций и элементов стальной оболочки резервуара с целью их ограничения, обеспечивающего нормальную эксплуатацию резервуара и его долговечность.
10.1.4. Расчет осадок основания резервуара следует выполнять, как правило, с использованием расчетной схемы основания в виде линейно-деформируемой среды: полупространства с условным ограничением глубины сжимаемой толщи или слоя конечной толщины.
В случае, если расчетные значения деформаций основания превышают предельные значения, следует выполнить расчет осадок с учетом совместной работы оболочки резервуара и основания, рассматривая расчетную схему основания, характеризуемую коэффициентами жесткости, в качестве которых принимаются отношения давления на основание к его расчетным осадкам в различных точках поверхности согласно рекомендациям СНиП 2.01.09.
Расчет системы «резервуар-основание» может быть выполнен также с использованием существующих вычислительных комплексов по определению осадок фундаментов с учетом взаимодействия основания и оболочки резервуара.
10.1.5. Проектная высота расположения днища резервуара определяется технологическим заданием, однако, эта высота должна превышать максимальный уровень окружающей спланированной поверхности земли минимум на 0.5 м, а после достижения основанием расчетных осадок высота днища над уровнем окружающей земли должна быть не менее 0,15 м.
10.1.6. В проекте КМ должно быть представлено задание для проектирования основания и фундаментов под резервуар, включающее расчетные реактивные усилия (нагрузки), передаваемые от корпуса резервуара на его фундамент, а также величины допустимых деформаций основания.
10.2. Расчет нагрузок на основание и фундамент резервуара
10.2.1. Реактивные усилия, передаваемые с корпуса на основание и фундамент резервуара, определяются в зависимости от конструктивных, технологических, климатических, сейсмических нагрузок и их сочетаний, приведенных в таблице П.4.6 Приложения П.4.
10.2.2. В состав нагрузок, передаваемых по контуру стенки резервуара на его фундамент, входят нагрузки двух типов.
Нагрузки первого типа, обеспечивающие осесимметричное распределение усилий по контуру стенки, включают:
— вес резервуара с учетом оборудования и теплоизоляции, за вычетом центральной части днища;
— снеговую нагрузку;
— избыточное давление и разрежение в газовом пространстве резервуара.
Нагрузка второго типа возникает от ветрового воздействия на корпус резервуара и создает кососимметричное распределение усилий по контуру стенки.
Ветровая нагрузка вызывает появление опрокидывающего момента, вычисляемого относительно точки, расположенной на оси симметрии опорного контура стенки с подветренной стороны резервуара. Нагрузки первого типа создают момент, препятствующий опрокидыванию резервуара.
10.2.3. Перечень необходимых расчетов включает:
— определение нагрузок на центральную часть днища в условиях эксплуатации, гидро- пневмоиспытаний и при сейсмическом воздействии;
— расчет максимальных и минимальных нагрузок по контуру стенки в условиях эксплуатации и при сейсмическом воздействии;
— проверку на отрыв окраек днища от фундамента при действии внутреннего избыточного давления на пустой резервуар;
— проверку на опрокидывание пустого резервуара путем сравнения опрокидывающего момента и момента от удерживающих сил;
— проверку резервуара с продуктом на опрокидывание в условиях землетрясения;
— расчет анкеров, если происходит отрыв окраек днища от фундамента при действии внутреннего давления на пустой резервуар;
— расчет анкеров, если устойчивость пустого резервуара от опрокидывания не обеспечена;
— расчет анкеров, если устойчивость резервуара с продуктом от опрокидывания при землетрясении не обеспечена.
Расчет нагрузок на основание и фундамент резервуара при землетрясении приведен в п. 9.6.6.
10.2.4. Опрокидывающий момент, действующий на резервуар в результате ветрового воздействия, вычисляется по формуле:
где
10.2.5. Расчетная погонная нагрузка по контуру стенки характеризуется максимальным и минимальным значениями, соответствующими диаметрально противоположным участкам фундамента (рис. 10.1). Максимальная и минимальная нагрузки определяются соответственно, как сумма и разность максимальных нагрузок первого и второго типа (с учетом знаков). Расчетная нагрузка по контуру стенки в основании резервуара определяется по формулам:
Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара
10.2.6. Расчетная вертикальная нагрузка на фундамент резервуара, соответствующая 1-му расчетному сочетанию нагрузок (таблица П. 4.6 Приложения П.4), составляет:
Qmax = γn{1,05(Gs + Gr) + 0,95[1,05(Gs0 + Gr0) + 1,3(Gst + Grt)] + (0.9fsps + 0,95·1,2рv)πr2}.
10.2.7. Если теплоизоляция, или вакуум, или снеговая нагрузка отсутствуют, формула 10.2.6 должна быть приведена в соответствие с полученным сочетанием нагрузок.
10.2.8. Коэффициент fs назначается согласно указаниям п. 9.2.3.1.7.
10.2.9. Нагрузки на центральную часть днища определяются исходя из величины внутреннего избыточного давления, максимального проектного уровня налива и плотности продукта (эксплуатация) или воды (гидро- пневмоиспытания). Эту нагрузку следует определять по формулам:
pf = γn[0,001g(ρH + ρstbc) + 1,2p],
Pfg = γn[0,001g(ρgH0g + ρstbc) + 1,25p].
10.2.10. Требования по установке анкеров
10.2.10.1. Анкеровка корпуса резервуара требуется если:
— происходит отрыв окраек днища от фундамента при действии внутреннего избыточного давления;
— момент от сил, вызванных ветровым воздействием, превышает момент от вертикальных удерживающих сил, действующих на пустой резервуар.
10.2.10.2. В случаях, указанных в п. 10.2.10.1, стенка резервуара прикрепляется к фундаменту анкерными устройствами, шаг установки и размеры которых определяются расчетом.
10.2.10.3. Требуется установка анкеров, если выполняются следующие неравенства, соответствующие условиям п. 10.2.10.1:
Qmin < 0, (Qmin — Fwvr)r ≤ Мw.
Левая часть второго неравенства представляет момент от удерживающих сил, а правая — опрокидывающий момент, определяемый по формуле п. 10.2.4.
10.2.10.4. Подъемная сила от действия ветра на крышу определяется по формуле:
Fwvr = l,4·0,6γnπr2pw.
Для конических крыш с углом наклона αr ≥ 5° и сферических крыш высотой fr ≥ 0,1D, а также для резервуаров с плавающими крышами следует принять Fwvr = 0.
10.2.10.5. Расчетная минимальная вертикальная нагрузка на фундамент резервуара вычисляется для 3-го расчетного сочетания нагрузок (таблица П. 4.6 Приложения П.4) и составляет:
Qmin = γn[(Gs + Gr) + 0,95(Gs0 + Gr0 + Gst + Grt) — 1,2·0,95р π r2].
10.2.10.6. Если теплоизоляция или избыточное давление отсутствуют, формула 10.2.10.5 должна быть приведена в соответствие с полученным сочетанием нагрузок.
10.2.10.7. Расчетное усилие в одном анкерном болте определяется по формуле:
10.3. Конструктивные решения фундаментов
10.3.1. Устройство фундаментов под резервуары рекомендуется выполнять с применением следующих конструктивных решений:
— грунтовая подушка (рис. 10.2);
— кольцевой железобетонный фундамент (рис. 10.3);
— сплошная железобетонная плита (рис. 10.4).
10.3.2. Для устройства грунтовой подушки используются чистые и прочные сыпучие материалы — песок и щебень.
Рис. 10.2. Грунтовая подушка
Формирование подушки осуществляется слоями толщиной около 150 мм с утрамбовкой слоев катками массой от 5 до 10 тонн. Высота подушки должна составлять не менее 0,5 м.
По верху подушки устраивается гидрофобный слой из битумно-песчаной смеси толщиной не менее 50 мм, состоящей из формованной в горячем состоянии смеси следующих компонентов: 9 % битума, растворенного в чистом керосине, 10 % портландцемента и 81 % чистого песка.
Дренаж грунтовой подушки и контроль протечек через возможные повреждения днища обеспечивается путем установки по периметру фундамента на расстоянии не более 5 м друг от друга радиальных дренажных трубок диаметром 75 мм, закрытых с торцов пластиковой сеткой 10 × 10 мм.
Рис. 10.3. Кольцевой железобетонный фундамент
10.3.3. Кольцевой железобетонный фундамент используется при наличии значительных контурных нагрузок по периметру стенки или при необходимости установки анкеров.
Ширина кольцевого фундамента должна быть не менее 0,8 м для резервуаров объемом до 3000 м3 и не менее 1,0 для резервуаров объемом свыше 3000 м3. Толщина железобетонного кольца принимается не менее 0,3 м. При строительстве резервуаров в сейсмических районах наличие кольцевого железобетонного фундамента является обязательным. Ширина кольца должна быть не менее 1.5 м, а толщина не менее 0,4 м.
Рис. 10.4. Сплошная железобетонная плита
10.3.4. Фундамент в виде сплошной железобетонной плиты рекомендуется для резервуаров диаметром не более 15 м на немерзлых грунтах, для всех резервуаров на мерзлых грунтах, а также для всех резервуаров при хранении в них этилированных бензинов, реактивного топлива или иных ядовитых продуктов. Для обнаружения возможных протечек продукта железобетонная плита должна иметь уклон не менее 1 % от центра к периметру, а также радиально расположенные дренажные канавки.
11. Защита резервуаров от коррозии
11.1. Защита резервуаров от коррозии должна проводиться на основании анализа условий эксплуатации, климатических факторов, атмосферных и иных воздействий на наружные поверхности резервуаров, а также вида и степени агрессивного воздействия хранимого продукта и его паров на внутренние поверхности. По результатам анализа должен быть разработан отдельный проект или раздел в составе проекта КМ антикоррозионной защиты (АКЗ) резервуара с указанием систем АКЗ, срока их службы при выполнении принятых в проекте технических решений.
Производитель лакокрасочных материалов (ЛКМ) разрабатывает регламент (инструкцию) по нанесению ЛКМ, в котором подробно описывается система АКЗ, применяемые материалы и технология их нанесения.
На выполнение работ по антикоррозионной защите резервуара Производитель работ разрабатывает проект производства работ, в котором отражаются технология подготовки поверхностей резервуара, нанесение грунтовочных и покрывных слоев покрытия, методы по контролю качества, применяемое оборудование с учетом требований Регламента производителя ЛКМ, меры безопасности, противопожарные мероприятия.
11.2. Защиту от коррозии рекомендуется осуществлять применением систем лакокрасочных или металлизационно-лакокрасочных антикоррозионных покрытий, а также применением электрохимических способов.
Для защиты резервуаров от коррозии могут применяться следующие типы ЛКМ со сроком службы не менее 10 лет для внутренней поверхности и 15 лет для наружной поверхности:
— эпоксидные покрытия;
— двухкомпонентные полиуретановые покрытия;
— однокомпонентные полиуретановые влагоотверждаемые покрытия.
В том случае, если нормативный срок службы резервуара превышает расчетный срок службы антикоррозионных покрытий, в техническом задании на проектирование резервуара (Приложение П.2) должны быть установлены припуски на коррозию основных конструктивных элементов — стенки, днища, крыши, понтона, плавающей крыши.
11.3. При выборе типа ЛКМ необходимо отдавать предпочтение материалам с высокой степенью ремонтопригодности и технологичности их применения, а также учитывать погодно-климатические условия во время нанесения антикоррозионных покрытий:
— для эпоксидных и двухкомпонентных полиуретановых покрытий — температура поверхности не ниже +5°С и относительная влажность воздуха не выше 80 %;
— для однокомпонентных полиуретановых влагоотверждаемых покрытий — температура поверхности не ниже 0°С и относительная влажность воздуха до 98 %.
11.4. Системы АКЗ, тип покрытия и материалы для защиты внутренних поверхностей резервуаров определяются с учетом эксплуатационных условий и свойств хранимых жидкостей, а также степени их агрессивного воздействия на конструкции резервуаров в соответствии с таблицей 11.1.
Таблица 11.1
ЭЛЕМЕНТЫ КОНСТРУКЦИЙ РЕЗЕРВУАРОВ
|
СТЕПЕНЬ АГРЕССИВНОГО ВОЗДЕЙСТВИЯ СРЕДЫ НА СТАЛЬНЫЕ КОНСТРУКЦИИ ВНУТРИ РЕЗЕРВУАРОВ
|
||
---|---|---|---|
сырой нефти
|
мазута, дизельного топлива, керосина
|
бензина
|
|
Внутренняя поверхность днища и нижний пояс на высоту 1 м от днища
|
средне-агрессивная
|
средне-
агрессивная |
слабо-агрессивная
|
Средние пояса, нижние части понтонов и плавающих крыш
|
слабо-агрессивная
|
слабо-
агрессивная |
слабо-агрессивная
|
Верхний пояс (зона периодического смачивания)
|
средне-агрессивная
|
слабо-
агрессивная |
средне-агрессивная
|
Кровля резервуара, верх и бортовые поверхности понтонов и плавающих крыш
|
средне-агрессивная
|
средне-
агрессивная |
слабо-агрессивная
|
Примечания:
1. Степень агрессивного воздействия мазута принимается для температуры до 90°С.
2. Для нефти и нефтепродуктов с высоким содержанием серы (более 1,8 %) степень агрессивного воздействия на внутреннюю поверхность днища, нижний пояс стенки, кровлю, верх и бортовые поверхности понтонов и плавающих крыш повышается на одну ступень.
|
11.5. Антикоррозионные покрытия внутренних поверхностей резервуаров должны удовлетворять следующим условиям:
— быть устойчивыми к воздействию нефти, нефтепродуктов, подтоварной воды;
— обладать хорошей адгезией к грунтовочному слою или основному металлу (в зависимости от технологии нанесения);
— не вступать в реакцию с хранимыми продуктами и не оказывать влияние на их кондицию;
— быть стойкими к растрескиванию;
— обеспечивать совместимость деформаций с корпусом резервуара (с учетом различных толщин стенки по высоте) при заполнении и опорожнении;
— обладать износостойкостью на истирание (в резервуарах с плавающими крышами и понтонами) и долговечностью;
— сохранять адгезионные свойства, механическую прочность и химическую стойкость в расчетном диапазоне температур;
— сохранять защитные свойства при совместной работе с электрохимической, катодной и протекторной защитой;
— быть технологичными при нанесении и соответствовать температуре и относительной влажности воздуха во время выполнения работ;
— удовлетворять требованиям электростатической искробезопасности.
11.6. Наружные поверхности резервуаров, находящиеся на открытом воздухе, должны быть защищены антикоррозионными покрытиями на основе ЛКМ светлого тона с высокой светоотражательной способностью — не менее 98 % по ГОСТ 896-69. Степень агрессивного воздействия среды на наружные поверхности резервуаров определяется температурно-влажностными характеристиками окружающего воздуха и концентрацией в нем коррозионно-активных газов в соответствии со СНиП 2.03.11-85.
11.7. При защите от коррозии наружной поверхности днищ резервуаров следует руководствоваться следующими требованиями:
— устройство фундаментов и основания под резервуар должно обеспечивать отвод грунтовых вод и атмосферных осадков от днища;
— при выполнении гидрофобного слоя из битумно-песчаной смеси по п. 10.3.2 не требуется нанесения защитных покрытий на наружную поверхность днища. Применяемые песок и битум не должны содержать коррозионно-активных агентов.
11.8. В целях активной защиты резервуара от почвенной коррозии и коррозии блуждающими токами рекомендуется применение электрохимической защиты.
Электрохимическая защита наружной поверхности днища, а также внутренних поверхностей днища и нижнего пояса стенки в зоне контакта с донным осадком и слоем подтоварной воды осуществляется установками протекторной защиты (УПЗ) или установками катодной защиты (УКЗ).
Выбор метода защиты осуществляется на основании сравнения технико-экономических показателей.
11.9. При подготовке резервуара для нанесения антикоррозионных покрытий следует руководствоваться требованиями ГОСТ 9.402-2004 «ЕСЗКС. Покрытия лакокрасочные. Подготовка металлических поверхностей перед окрашиванием».
На поверхностях металлоконструкций, подготовленных к выполнению антикоррозионных работ, должны отсутствовать:
— возникшие при сварке остатки шлака, сварочные брызги, наплывы, неровности сварных швов;
— следы обрезки и газовой резки, расслоения и растрескивания;
— острые кромки до радиуса менее 3,0 мм на внутренней и 1,5 мм на наружной поверхностях резервуара;
— вспомогательные элементы, использованные при сборке, монтаже, транспортировании, подъемных работах и следы оставшиеся от приварки этих элементов;
— химические загрязнения (остатки флюса, составов использовавшихся при дефектоскопии сварных швов), которые находятся на поверхности сварных швов и рядом с ними;
— жировые, механические и другие загрязнения.
Сварные швы должны иметь плавный переход к основному металлу без подрезов и наплывов. Все элементы металлоконструкций внутри резервуара, привариваемые к стенке, днищу или крыше, должны быть обварены по контуру для исключения образования зазоров и щелей. Кроме того, все элементы металлоконструкций, находящихся на открытом воздухе, при средне-агрессивном воздействии окружающей среды, также должны быть обварены по контуру для исключения образования зазоров и щелей.
Перед нанесением защитных покрытий все поверхности должны быть очищены от окислов до степени 2 по ГОСТ 9.402-2004 или до степени не ниже Sa 2,5 по ИСО 8501-1, обеспылены и обезжирены. Степень обезжиривания — 1 по ГОСТ 9.402-2004. Степень обеспылевания должна быть не ниже 2 класса по ИСО 8502-3.
11.10. При выполнении антикоррозионных работ должны быть учтены требования к охране окружающей среды и требований действующих правил техники безопасности в строительстве: СНиП 2.03.11, СНиП 1.03-05, ГОСТ 12.3.005, ГОСТ 12.3.016, ГОСТ 12.4.011, СН-245.
11.11. После проведения антикоррозионных работ по результатам пооперационного контроля составляется заключение о качестве нанесенных защитных материалов, разрешающее выполнение следующего этапа работ. После завершения всего комплекса работ по антикоррозионной защите оформляется Акт освидетельствования комплексного защитного покрытия.